We are given that, (cotα1)⋅(cotα2)…(cotαn)=1 ⇒(cosα1⋅(cosα2)…(cosαn)=(sinα1)⋅(sinα2)…(sinαn)...(i)
Let y=(cosα1)⋅(cosα2)…(cosαn) (to be max)
Squaring both sides, we get y2=(cos2α1)⋅(cos2α2)…(cos2αn) =cosα1⋅sinα1⋅cosα2⋅sinα2…cosαn⋅sinαn [using (i)] =2n1[sin2α1⋅sin2α2…sin2αn]
As 0≤α1,α2,…αn≤2π ∴0≤2α1,2α2,…,2αn≤π ⇒0≤sin2α1,sin2α2,…sin2αn≤1 ∴y2≤2n1⋅1 ⇒y≤2n/21 ∴ Maximum value of y is 2n/21