Q. The maximum value of $\left(\cos \alpha_{1}\right) \cdot\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)$. Under the restrictions $0 \leq \alpha_{1}, \alpha_{2}, \ldots \alpha_{n} \leq \frac{\pi}{2}$ and $\left(\cot \alpha_{1}\right) \cdot\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{n}\right)=1$ is
ManipalManipal 2013
Solution: