Here, X[142536]=[−72−84−96]
The matrix given on the RHS of the equation is a 2×3 matrix and the one given on the LHS of the equation is a 2×3 matrix. Therefore, X has to be a 2×2 matrix. Now, let X=[abcd]
Therefore, we have [abcd][142536]=[−72−84−96] →[a+4cb+4d2a+5c2b+5d3a+6c3b+6d]=[−72−84−96]
On equating the corresponding elements of the two matrices, we have a+4c=−7,2a+5c=−8,3a+6c=−9 b+4d=2,2b+5d=4,3b+6d=6 Now, a+4c=−7 →a=−7−4c 2a+5c=−8 →−14−8c+5c=−8 →−3c=6 →C=−2 ∴a−−7−4(−2)−−7+8−1 Now, b+4d=2 →b=2−4d and 2b+5d=4 →4−8d+5d=4 →−3d=0⇒d=0 ∴b−2−4(0)−2 Thus, a=1,b=2,c=−2,d=0 Hence, the required matrix X is [12−20]