Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The matrix X such that X[1 2 3 4 5 6]=[-7 -8 -9 2 4 6] is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The matrix $X$ such that $X\begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix}=\begin{bmatrix}-7 & -8 & -9 \\ 2 & 4 & 6\end{bmatrix}$ is
Matrices
A
$\begin{bmatrix}1 & 2 \\ 2 & 0\end{bmatrix}$
B
$\begin{bmatrix}1 & -2 \\ 2 & 0\end{bmatrix}$
C
$\begin{bmatrix}1 & 2 \\ -2 & 0\end{bmatrix}$
D
$\begin{bmatrix}1 & 2 \\ 0 & -2\end{bmatrix}$
Solution:
Here, $X \begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix}=\begin{bmatrix}-7 & -8 & -9 \\ 2 & 4 & 6\end{bmatrix}$
The matrix given on the RHS of the equation is a $2 \times 3$ matrix and the one given on the LHS of the equation is a $2 \times 3$ matrix. Therefore, $X$ has to be a $2 \times 2$ matrix. Now, let $X=\begin{bmatrix}a & c \\ b & d\end{bmatrix}$
Therefore, we have
$\begin{bmatrix}a & c \\ b & d\end{bmatrix}\begin{bmatrix}1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix}=\begin{bmatrix}-7 & -8 & -9 \\ 2 & 4 & 6\end{bmatrix}$
$\rightarrow\begin{bmatrix}a+4 c & 2 a+5 c & 3 a+6 c \\ b+4 d & 2 b+5 d & 3 b+6 d\end{bmatrix}=\begin{bmatrix}-7 & -8 & -9 \\ 2 & 4 & 6\end{bmatrix}$
On equating the corresponding elements of the two matrices, we have
$ a+4 c=-7,2 a+5 c=-8,3 a+6 c=-9 $
$b+4 d=2,2 b+5 d=4,3 b+6 d=6 $
$ \text { Now, } a+4 c=-7$
$ \rightarrow a=-7-4 c $
$ 2 a+5 c=-8 $
$ \rightarrow -14-8 c+5 c=-8$
$ \rightarrow -3 c=6 $
$ \rightarrow C =-2$
$ \therefore a--7-4(-2)--7+8-1 $
$ \text { Now, } b+4 d=2 $
$ \rightarrow b=2-4 d $
$ \text { and } 2 b+5 d=4$
$ \rightarrow 4-8 d+5 d=4$
$ \rightarrow -3 d=0 \Rightarrow d=0$
$ \therefore b-2-4(0)-2$
$ \text { Thus, } a=1, b=2, c=-2, d=0 $
$ \text { Hence, the required matrix } X \text { is }\begin{bmatrix}1 & -2 \\2 & 0\end{bmatrix}$