The given equation of parabola is y=3a2x2+2a2x−2a ⇒y+2a=3a3[x2+2a3x] ⇒y+2a=3a3[x2+2a3x+16a29−16a29] ⇒y+2a=3a3[x+4a3]2−16a29×3a3 ⇒y+2a+163a=3a3(x+4a3)2 ⇒(y+1635a)=3a3(x+4a3)2
Thus the vertices of parabola is (−4a3,−1635a).
Let h=−4a3
and k=−1635a ⇒hk=64105
Thus the locus of vertices of a parabola is xy=64105