Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The locus of the vertices of the family of parabolas $y=\frac{a^{3}x^{2}}{3}+\frac{a^{2}x}{2}-2a$ is :

AIEEEAIEEE 2006Conic Sections

Solution:

The given equation of parabola is
$y=\frac{a^{2}x^{2}}{3}+\frac{a^{2}x}{2}-2a$
$\Rightarrow y+2a=\frac{a^{3}}{3}\left[x^{2}+\frac{3}{2a}x\right]$
$\Rightarrow y+2a=\frac{a^{3}}{3}\left[x^{2}+\frac{3}{2a}x+\frac{9}{16a^{2}}-\frac{9}{16a^{2}}\right]$
$\Rightarrow y+2a=\frac{a^{3}}{3}\left[x+\frac{3}{4a}\right]^{2}-\frac{9}{16a^{2}}\times\frac{a^{3}}{3}$
$\Rightarrow y+2a+\frac{3a}{16}=\frac{a^{3}}{3}\left(x+\frac{3}{4a}\right)^{2}$
$\Rightarrow \left(y+\frac{35a}{16}\right)=\frac{a^{3}}{3}\left(x+\frac{3}{4a}\right)^{2}$
Thus the vertices of parabola is $\left(-\frac{3}{4a}, -\frac{35a}{16}\right)$.
Let $h=-\frac{3}{4a}$
and $k=-\frac{35a}{16}$
$\Rightarrow hk=\frac{105}{64}$
Thus the locus of vertices of a parabola is
$xy=\frac{105}{64}$