Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The line y = a intersects the curve y = g (x), atleast at two points. If ∫ limitsx2g(t)dt=(x2/2)+∫ limits2xt2 g(t)dt then possible value of α is/are -
Q. The line
y
=
a
intersects the curve
y
=
g
(
x
)
, atleast at two points. If
2
∫
x
g
(
t
)
d
t
=
2
x
2
+
x
∫
2
t
2
g
(
t
)
d
t
then possible value of
α
is/are -
3911
210
Integrals
Report Error
A
(
−
2
1
,
2
1
)
20%
B
[
−
2
1
,
2
1
]
40%
C
(
−
2
1
,
2
1
)
−
{
0
}
40%
D
{
−
2
1
,
0.
2
1
}
0%
Solution:
2
∫
x
g
(
t
)
d
t
=
2
x
2
+
x
∫
2
t
2
g
(
t
)
d
t
Differentiating w.r.t. x, we get
g
(
x
)
=
x
+
(
−
x
2
(
g
(
x
))
⇒
g
(
x
)
=
1
+
x
2
x
Clearly from graph,
α
∈
(
−
2
1
,
2
1
)
−
{
0
}