Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The line $y = a$ intersects the curve $y = g (x)$, atleast at two points. If $\int\limits^{x}_{{2}}g(t)dt=$$\frac{x^{2}}{2}+\int\limits^{2}_{{x}}t^2\,g(t)dt$ then possible value of $\alpha$ is/are -

Integrals

Solution:

$\int\limits^{x}_{{2}}g(t)dt=$$\frac{x^{2}}{2}+\int\limits^{2}_{{x}}t^2\,g(t)dt$
Differentiating w.r.t. x, we get
$g (x) = x + (-x^2 (g (x))$
$\Rightarrow g\left(x\right)=\frac{x}{1+x^{2}}$
image
Clearly from graph, $\alpha\in\left(-\frac{1}{2}, \frac{1}{2}\right)-\left\{0\right\}$