Fact : Ep(n!)=[Pn]+[P2n]+[P3n]+...+[Psn] such that Ps<n<Ps+1, where [x] represents G.I.F.
Now, prime factors of 10=2×5 ∵E2(51!) =[251]+[2251]+[2351]+[2451]+[2551]+[2651] =25+12+6+3+1+0=47
Again, E5(51!)=[551]+[5251]+[5351] =10+2=12 E10(51!)= number of zeroes in 51! ∴E10(51!)= Minimum of (47,12)=12 ∴10n=1012 so n=12. Short Cut Method : E2(51!)=E2(2⋅4⋅6⋅8⋅....50) =E2(225(1⋅2⋅3⋅4⋅5⋅....25)) =25+E2(1⋅2⋅3⋅....25) =25+E2(2⋅4⋅6⋅8⋅...24) =25+E2(212(1⋅2⋅3⋅4...12)) =25+12+E2(1⋅2⋅3⋅4....12) 37+E2(2⋅4⋅...12) =37+E2(26(1⋅2⋅...6)) =37+6+E2(2⋅4⋅6) =37+6+3E2(1⋅2⋅3) =37+6+3+1+E2(1⋅3)=47
Similarly, E5(51!)=12
For E10(51!), we need at least one 2 and one 5 ∴ Max. exponent of 10= Minimum of E2(51!) and E5(51!) i.e. Minimum of (47,12) ∴n=12