Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The largest value of n, so that 10n divides 51! is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The largest value of $n$, so that $10^n$ divides $51!$ is
Permutations and Combinations
A
$47$
B
$12$
C
$35$
D
$59$
Solution:
Fact :
$E_{p}\left(n!\right) = \left[\frac{n}{P}\right] +\left[\frac{n}{P^{2}}\right] +\left[\frac{n}{P^{3}}\right]+... +\left[\frac{n}{P^{s}}\right]$ such that
$P^s < n < P^{s + 1}$, where $[x]$ represents $G.I.F$.
Now, prime factors of $10 = 2 \times 5$
$\because E_2(51!)$
$=\left[\frac{51}{2}\right]+\left[\frac{51}{2^{2}}\right]+\left[\frac{51}{2^{3}}\right] + \left[\frac{51}{2^{4}}\right]+\left[\frac{51}{2^{5}}\right]+\left[\frac{51}{2^{6}}\right]$
$= 25 + 12 + 6 + 3 + 1 + 0 = 47 $
Again, $E_{5} \left(51!\right) = \left[\frac{51}{5}\right]+\left[\frac{51}{5^{2}}\right]+\left[\frac{51}{5^{3}}\right] $
$= 10 + 2 = 12 $
$E_{10} (51!)=$ number of zeroes in $51!$
$\therefore E_{10} (51!) =$ Minimum of $(47, 12) = 12$
$\therefore 10^n = 10^{12}$ so $n =12$.
Short Cut Method :
$E_2(51!) = E_2(2 \cdot 4 \cdot 6 \cdot 8 \cdot .... 50)$
$=E_{2}\left(2^{25}\left(1\cdot2\cdot3\cdot4\cdot5\cdot....25\right)\right) $
$ = 25 + E_{2}\left(1\cdot2\cdot3\cdot....25\right) $
$= 25 + E_{2}\left(2 \cdot 4 \cdot 6 \cdot 8\cdot...24\right) $
$ = 25+E_{2}\left(2^{12}\left(1\cdot2\cdot3\cdot4...12\right)\right) $
$= 25+12 + E_{2}\left(1\cdot2\cdot3\cdot4....12\right) $
$37+E_{2}\left(2\cdot4\cdot...12\right) $
$= 37 + E_{2}\left(2^{6}\left(1\cdot2\cdot...6\right)\right) $
$ = 37+ 6 +E_{2}\left(2\cdot4\cdot6\right) $
$ = 37 + 6 +3 E_{2}\left(1\cdot2\cdot3\right)$
$= 37+6+3+1+E_{2}\left(1\cdot3\right) = 47$
Similarly, $E_5(51!) = 12$
For $E_{10}(51!)$, we need at least one $2$ and one $5$
$\therefore $ Max. exponent of $10 =$ Minimum of $E_2 (51!)$ and
$E_5(51!)$ i.e. Minimum of $(47, 12)$
$\therefore n = 12$