Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral ∫ ( sec 2 x/( sec x+ tan x)1 / 2) d x equals (for some arbitrary constant .K )
Q. The integral
∫
(
s
e
c
x
+
t
a
n
x
)
1/2
s
e
c
2
x
d
x
equals (for some arbitrary constant
K
)
1948
212
JEE Advanced
JEE Advanced 2012
Report Error
A
−
(
s
e
c
x
+
t
a
n
x
)
11/2
1
{
11
1
−
7
1
(
sec
x
+
tan
x
)
2
}
+
K
B
(
s
e
c
x
+
t
a
n
x
)
1/2
1
{
11
1
−
7
1
(
sec
x
+
tan
x
)
2
}
+
K
C
−
(
s
e
c
x
+
t
a
n
x
)
1/2
1
{
11
1
+
7
1
(
sec
x
+
tan
x
)
2
}
+
K
D
(
s
e
c
x
+
t
a
n
x
)
1/2
1
{
11
1
+
7
1
(
sec
x
+
tan
x
)
2
}
+
K
Solution:
I
=
∫
(
s
e
c
x
+
t
a
n
x
)
9/2
s
e
c
2
x
d
x
Let
sec
x
+
tan
x
=
t
⇒
sec
x
−
tan
x
=
1/
t
Now
(
sec
x
tan
x
+
sec
2
x
)
d
x
=
d
t
sec
x
(
sec
x
+
tan
x
)
d
x
=
d
t
sec
x
d
x
=
t
d
t
,
2
1
(
t
+
t
1
)
=
sec
x
I
=
2
1
∫
y
/2
(
t
+
t
1
)
t
d
t
=
2
1
∫
(
t
−
9/2
+
t
−
13/2
)
d
t
=
2
1
[
−
2
9
+
1
t
−
9/2
+
1
+
−
2
13
+
1
t
−
13/2
+
1
]
=
2
1
[
−
2
7
t
−
7
/2
+
−
2
11
t
−
1/2
]
=
−
7
1
t
−
7/2
−
11
1
t
−
11/2
=
−
7
1
t
/2
1
−
11
1
1
1/2
1
=
−
1/2
1
(
11
1
+
7
t
2
)
=
−
(
s
e
c
x
+
t
a
n
x
)
1/2
1
{
11
1
+
7
1
(
sec
x
+
tan
x
)
2
}
+
k