Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The integral sec2x(secx+tanx)1/2dx equals (for some arbitrary constant K)

JEE AdvancedJEE Advanced 2012

Solution:

I=sec2x(secx+tanx)9/2dx
Let secx+tanx=t
secxtanx=1/t
Now (secxtanx+sec2x)dx=dt
secx(secx+tanx)dx=dt
secxdx=dtt,12(t+1t)=secx
I=12(t+1t)y/2dtt
=12(t9/2+t13/2)dt
=12[t9/2+192+1+t13/2+1132+1]
=12[t7/272+t1/2112]
=17t7/2111t11/2
=171t/2111111/2
=11/2(111+t27)
=1(secx+tanx)1/2{111+17(secx+tanx)2}+k