Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral ∫ (2x3 -1/x4 +x) dx is equal to: (Here C is a constant of integration)
Q. The integral
∫
x
4
+
x
2
x
3
−
1
d
x
is equal to :
(Here C is a constant of integration)
4286
185
JEE Main
JEE Main 2019
Integrals
Report Error
A
lo
g
e
∣
∣
x
x
3
+
1
∣
∣
+
C
58%
B
2
1
lo
g
e
∣
x
3
∣
(
x
3
+
1
)
2
+
C
19%
C
2
1
lo
g
e
x
3
∣
x
3
+
1
∣
2
+
C
17%
D
lo
g
e
x
3
∣
x
3
+
1
∣
2
+
C
6%
Solution:
∫
x
4
+
x
2
x
3
−
1
d
x
⇒
∫
x
4
+
x
(
4
x
3
+
1
)
−
(
2
x
3
+
2
)
d
x
⇒
∫
x
4
+
x
4
x
3
+
1
d
x
−
2
∫
x
1
d
x
x
4
+
x
=
t
⇒
(
4
x
3
+
1
)
d
x
=
d
t
⇒
∫
t
d
t
−
2
∫
x
1
d
x
⇒
ℓ
n
∣
t
∣
−
2
ℓ
n
x
+
C
⇒
ℓ
n
∣
∣
x
2
x
4
+
x
∣
∣
+
C
⇒
ℓ
n
∣
∣
x
x
3
+
1
∣
∣
+
C