Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The integral $ \int \frac{2x^{3} -1}{x^{4} +x} dx $ is equal to :
(Here C is a constant of integration)

JEE MainJEE Main 2019Integrals

Solution:

$\int \frac{2 x^{3}-1}{x^{4}+x} d x$
$\Rightarrow \int \frac{\left(4 x^{3}+1\right)-\left(2 x^{3}+2\right)}{x^{4}+x} d x$
$\Rightarrow \int \frac{4 x^{3}+1}{x^{4}+x} d x-2 \int \frac{1}{x} d x$
$x^{4}+x=t \Rightarrow \left(4 x^{3}+1\right) d x=d t$
$\Rightarrow \int \frac{d t}{t}-2 \int \frac{1}{x} d x$
$\Rightarrow \ell n|t|-2 \ell n x+C$
$\Rightarrow \ell n \left|\frac{x^{4}+x}{x^{2}}\right|+C \Rightarrow \ell n\left|\frac{x^{3}+1}{x}\right|+C$