Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The indefinite integral I=∫ ((( sin )2 x-( cos )2 x)2019/( sin x)2021( cos x)2021) d x simplifies to (where c is an integration constant)
Q. The indefinite integral
I
=
∫
(
s
i
n
x
)
2021
(
c
o
s
x
)
2021
(
(
s
i
n
)
2
x
−
(
c
o
s
)
2
x
)
2019
d
x
simplifies to (where
c
is an integration constant)
645
147
NTA Abhyas
NTA Abhyas 2022
Report Error
A
2020
(
(
s
i
n
)
2
x
−
(
c
o
s
)
2
x
)
2020
+
c
B
2020
(
t
a
n
x
−
c
o
t
x
)
2020
+
c
C
2020
(
s
i
n
x
−
c
o
s
x
)
2020
+
c
D
2020
(
(
t
a
n
)
2
x
+
(
c
o
t
)
2
x
)
2020
+
c
Solution:
I
=
∫
s
i
n
x
c
o
s
x
s
i
n
2
x
−
c
o
s
2
x
s
i
n
2
x
c
o
s
2
x
1
d
x
=
∫
tan
x
−
cot
x
2019
s
i
n
2
x
c
o
s
2
x
s
i
n
2
x
+
c
o
s
2
x
d
x
=
∫
tan
x
−
cot
x
2019
sec
2
x
+
cosec
2
x
d
x
Let
tan
x
−
cot
x
=
t
⇒
sec
2
x
+
cosec
2
x
d
x
=
d
t
∴
I
=
∫
t
2019
d
t
=
2020
t
2020
+
c
=
2020
t
a
n
x
−
c
o
t
x
2020
+
c