Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The indefinite integral $I=\int \frac{\left((\sin )^{2} x-(\cos )^{2} x\right)^{2019}}{(\sin x)^{2021}(\cos x)^{2021}} d x$ simplifies to (where $c$ is an integration constant)

NTA AbhyasNTA Abhyas 2022

Solution:

$I=\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin x \cos x} \frac{1}{\sin ^{2} x \cos ^{2} x} d x$
$=\int \tan x-\cot x^{2019} \frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$
$=\int \tan x-\cot x^{2019} \sec ^{2} x+\text{cosec}^ 2 x d x$
Let $\tan x-\cot x=t$
$\Rightarrow \sec ^{2} x+\text{cosec} ^2 x d x=d t$
$\therefore I=\int t^{2019} d t$
$=\frac{t^{2020}}{2020}+c$
$=\frac{\tan x-\cot x^{2020}}{2020}+c$