Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The general solution of the equation: tan 2 α+2 √3 tan α=1 is given by: ( n ∈ Z )
Q. The general solution of the equation:
tan
2
α
+
2
3
tan
α
=
1
is given by :
(
n
∈
Z
)
2100
176
Trigonometric Functions
Report Error
A
α
=
2
nπ
0%
B
α
=
(
2
n
+
1
)
2
π
0%
C
α
=
(
6
n
+
1
)
12
π
100%
D
α
=
n
12
π
0%
Solution:
Given equation can be written as
(
tan
α
+
3
)
2
=
4
tan
α
+
3
=
±
2
tan
α
=
2
−
3
or
tan
α
=
−
2
−
3
tan
α
=
π
/12
or
α
=
−
5
π
/2
=
7
π
/12
∴
α
=
π
/12
or
7
π
/12
∴
α
=
(
6
n
+
1
)
π
/12