Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The general solution of the equation: $\tan ^{2} \alpha+2 \sqrt{3} \tan \alpha=1$ is given by : $( n \in Z )$

Trigonometric Functions

Solution:

Given equation can be written as $(\tan \alpha+\sqrt{3})^{2}=4$
$ \tan \alpha+\sqrt{3}=\pm 2 $
$ \tan \alpha=2-\sqrt{3} $
or $ \tan \alpha=-2-\sqrt{3} $
$ \tan \alpha=\pi / 12$
or $\alpha=-5 \pi / 2=7 \pi / 12$
$ \therefore \alpha=\pi / 12 $
or $ 7 \pi / 12$
$\therefore \alpha=(6 n+1) \pi / 12 $