Q.
The functionf(x)={π−2xkcosx,3,if x=2πif x=2π
is continuous at x=2π, when k equals
2546
178
Continuity and Differentiability
Report Error
Solution:
Here,f(x)=<br/><br/>{<br/><br/>π−2xkcosx,<br/><br/>3,if x=2πif x=2π<br/><br/> ∴LHL=x→2π−limf(x)=x→2π−limπ−2xkcosx
Putting x=2π−h as x→2π− when h→0 ∴h→0limπ−2(2π−h)kcos(2π−h)=h→0lim2hksinh =h→0lim2k×hsinh=2k×1=2k(∵x→0limxsinx=1) RHL=x→2π+limf(x)=x→2π+limπ−2xkcosx
Putting x=2π+h as x→2π+ when h→0 ∴h→0limπ−2(2π+h)kcos(2π+h)=h→0lim−2h−ksinh =h→0lim2k×hsinh=2k×1=2k(∵x→0limxsinx=1)
Also, f(2π)=3. Since f(x) is continuous at x=2π. ∴LHL=RHL=f(2π)⇒2k=3⇒k=6