Q.
The function$f(x) =
\begin{cases}
\frac{ k \cos x }{\pi-2 x }, & \text{if $x \neq \frac{\pi}{2}$} \\
3, & \text{if $x =\frac{\pi}{2}$}
\end{cases}$
is continuous at $x =\frac{\pi}{2}$, when $k$ equals
Continuity and Differentiability
Solution: