We have, y=x4−6x2+8x+11
For maximum or minimum dxdy=0 ∴dxdy=4x3−12x+8=0 i.e., x3−3x+2=0 ⇒(x−1)(x2+x−2)=0⇒x=1,−2
Now, dx2d2y=12x2−12=12(x2−1) dx2d2y∣atx=0=0
Neither minimum nor maximum point
and dx2d2y∣atx=−2=36>0 ∴ The given function has a minimum at x=−2