Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The function $y = x^4 - 6x^2 + 8x + 11$ has a minimum at $x =$

COMEDKCOMEDK 2007Application of Derivatives

Solution:

We have, $y = x^4 - 6x^ 2 + 8x + 11$
For maximum or minimum $\frac{dy}{dx} = 0 $
$\therefore \, \frac{dy}{dx} = 4x^{3} - 12x + 8 = 0$ i.e., $x^{3} - 3x + 2 = 0 $
$\Rightarrow \left(x -1\right) \left(x^{2} +x-2\right)= 0 \Rightarrow x=1, - 2 $
Now, $\frac{d^{2}y}{dx^{2}} = 12x^{2} - 12 = 12\left(x^{2} - 1\right) $
$ \frac{d^{2} y}{dx^{2}}|_{at\, x=0} =0$
Neither minimum nor maximum point
and $ \frac{d^{2}y}{dx^{2}}| _{at\, x=-2} =36 > 0 $
$ \therefore $ The given function has a minimum at
$x = - 2$