1939
209
J & K CETJ & K CET 2015Relations and Functions - Part 2
Report Error
Solution:
Given, f(x)=2−cos3x1,x∈[0,3π] For one - one Let f(x1)=f(x2) ⇒2−cos3x11=2−cos3x21 ⇒2−cos3x1=2−cos3x2 ⇒cos3x1=cos3x2⇒x1=x2 ⇒ f is one-one For onto Let y=f(x),y∈ codomain ⇒y=2−cos3x1 ⇒y(2−cos3x)=1 ⇒2−cos3x=y1 ⇒cos3x=2−y1 ⇒x=31cos−1(2−y1)
Here, for all y∈ codomain there exist x∈ domain. so f(x) is onto.
Here for all yE codomain there exist x∈ domain. so is on to. f(x)