Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function is f(x)=(1/2- cos 3x), x ∈ [ 0,(π /3) ], is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The function is $ f(x)=\frac{1}{2-\cos \,3x},\,x\,\in \left[ 0,\frac{\pi }{3} \right], $ is
J & K CET
J & K CET 2015
Relations and Functions - Part 2
A
one-one, but not onto
19%
B
onto, but not one-one
18%
C
one-one as well as onto
47%
D
neither one-one nor onto
16%
Solution:
Given, $ f(x)=\frac{1}{2-\cos \,3x},\,x\,\in \left[ 0,\frac{\pi }{3} \right] $ For one - one Let $ f({{x}_{1}})=f({{x}_{2}}) $
$ \Rightarrow $ $ \frac{1}{2-\cos \,3{{x}_{1}}}=\frac{1}{2-\cos \,3\,{{x}_{2}}} $
$ \Rightarrow $ $ 2-\cos \,3{{x}_{1}}=2-\cos \,3{{x}_{2}} $
$ \Rightarrow $ $ \cos \,3{{x}_{1}}=\cos \,3{{x}_{2}}\,\,\Rightarrow \,\,{{x}_{1}}={{x}_{2}} $
$ \Rightarrow $ f is one-one For onto Let $ y=f(x),\,\,y\,\,\in $ codomain
$ \Rightarrow $ $ y=\frac{1}{2-\cos \,3x} $
$ \Rightarrow $ $ y(2-\cos \,3x)=1 $
$ \Rightarrow $ $ 2-\cos \,3x=\frac{1}{y} $
$ \Rightarrow $ $ \cos \,3x=2-\frac{1}{y} $
$ \Rightarrow $ $ x=\frac{1}{3}\,{{\cos }^{-1}}\left( 2-\frac{1}{y} \right) $
Here, for all $ y\,\in $ codomain there exist $ x\,\in $ domain. so $ f(x) $ is onto.
Here for all $ y\,E $ codomain there exist $ x\,\in $ domain. so is on to. $ f(x) $