f(x)=⎩⎨⎧4π+tan−1x,−2(x+1),2x−1,x∈(−∞,−1]∪[1,∞)x∈(−1,0]x∈(0,1)
for continuity at x=−1 L.H.L.=4π−4π=0 R.H.L.=0
so, continuous at x=−1
for continuity at x=1 L.H.L.=0 R.H.L.=4π+4π=2π
so, not continuous at x=1
For differentiability at x=−1 L.H.D.=1+11=21 R.H.D.=−21
so, non differentiable at x=−1