JEE MainJEE Main 2020Continuity and Differentiability
Solution:
$f(x) =
\begin{cases}
\frac{\pi}{4}+tan^{-1}\,x, & x \in(-\infty,-1] \cup[1, \infty) \\
-\frac{(x+1)}{2} , & x \in(-1,0]\\
\frac{x-1}{2}, & x \in(0,1)
\end{cases} $
for continuity at $x=-1$
$L.H.L. =\frac{\pi}{4}-\frac{\pi}{4}=0$
$R.H.L. =0$
so, continuous at $x=-1$
for continuity at $x=1$
$L.H.L. =0$
$R . H.L. =\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}$
so, not continuous at $x=1$
For differentiability at $x=-1$
$L.H.D. =\frac{1}{1+1}=\frac{1}{2}$
$R . H.D. =-\frac{1}{2}$
so, non differentiable at $x=-1$