Q.
The function f(x)=2x3+αx2+βx+γ, where α,β,γ∈R has local minimum at P(log3t2,f(log3t2)) and local maximum at Q(log3t,f(log3t)). If R(25,f(25)) is the point of inflection, then ' t ' is equal to
We have f′(x)=6x2+2αx+β ⇒f′(log3t2)=0 and f′(log3t)=0
Now log3t2+log3t=−62α (sum of the roots) ⇒3log3t=3−α
Also, f′′(x)=12x+2α f′′(25)=0⇒12(25)+2α=0⇒α=−15 ∴3log3t=315⇒t=35/3