Q. The function $f ( x )=2 x ^3+\alpha x ^2+\beta x +\gamma$, where $\alpha, \beta, \gamma \in R$ has local minimum at $P \left(\log _3 t ^2, f \left(\log _3 t ^2\right)\right)$ and local maximum at $Q \left(\log _3 t , f \left(\log _3 t \right)\right)$. If $R \left(\frac{5}{2}, f \left(\frac{5}{2}\right)\right)$ is the point of inflection, then ' $t$ ' is equal to
Application of Derivatives
Solution: