We have, f(x)=1+x2x
Injective
Let x1,x2∈R such that ⇒1+x12x1=1+x22x2 ⇒1+x12x12=1+x22x22 ⇒x12=x22 ⇒x1=x2 ∴f(x) is injective
Surjective
Let y=1+x2x ⇒y2(1+x2)=x2 ⇒y2+y2x2=x2 ⇒x2(1−y2)=y2 ⇒x=1−y2y2 ⇒1−y2y2≥0 ∴y∈(−∞,−1)∪[0,1) ∴ Range of f(x)=(−∞,−1)∪[0,1)
So, f(x) is not surjective.