Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f: R arrow R defined by f(x)=(x/√1+x2) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The function $f: R \rightarrow R$ defined by $f(x)=\frac{x}{\sqrt{1+x^{2}}}$ is
TS EAMCET 2020
A
surjective but not injective
B
bijective
C
injective but not surjective
D
neither injective nor surjective
Solution:
We have,
$f(x)=\frac{x}{\sqrt{1+x^{2}}}$
Injective
Let $x_{1}, x_{2} \in R$ such that
$\Rightarrow \frac{x_{1}}{\sqrt{1+x_{1}^{2}}}=\frac{x_{2}}{\sqrt{1+x_{2}^{2}}}$
$\Rightarrow \frac{x_{1}^{2}}{1+x_{1}^{2}}=\frac{x_{2}^{2}}{1+x_{2}^{2}} $
$\Rightarrow x_{1}^{2}=x_{2}^{2} $
$\Rightarrow x_{1}=x_{2}$
$\therefore f(x)$ is injective
Surjective
Let $ y=\frac{x}{\sqrt{1+x^{2}}} $
$\Rightarrow y^{2}\left(1+x^{2}\right)=x^{2} $
$\Rightarrow y^{2}+y^{2} x^{2}=x^{2}$
$\Rightarrow x^{2}\left(1-y^{2}\right)=y^{2} $
$\Rightarrow x=\sqrt{\frac{y^{2}}{1-y^{2}}} $
$\Rightarrow \frac{y^{2}}{1-y^{2}} \geq 0$
$\therefore y \in(-\infty,-1) \cup[0,1)$
$\therefore $ Range of $f(x)=(-\infty,-1) \cup[0,1)$
So, $f(x)$ is not surjective.