- Tardigrade
- Question
- Mathematics
- The feasible region for a LPP is shown shaded in the figure. Let Z = 3x - 4y be the objective function. (Maximum value of Z + Minimum value of Z) is equal to <img class=img-fluid question-image alt=image src=https://cdn.tardigrade.in/img/question/mathematics/0f5cca3895be3ed3d8d830e30c2b5e73-.png />
Q.
The feasible region for a is shown shaded in the figure.
Let be the objective function. (Maximum value of + Minimum value of ) is equal to
Solution:
maximum value of minimum value of .
Corner Points
Corresponding value of
(0,0)
0
(5, 0)
15 (maximum)
(6, 5)
-2
(6, 8)
-14
(4, 10)
-28
(0, 8)
-32 (minimum)
Corner Points | Corresponding value of |
---|---|
(0,0) | 0 |
(5, 0) | 15 (maximum) |
(6, 5) | -2 |
(6, 8) | -14 |
(4, 10) | -28 |
(0, 8) | -32 (minimum) |