Q.
The feasible region for a $LPP$ is shown shaded in the figure.
Let $Z = 3x - 4y $ be the objective function. (Maximum value of $Z$ + Minimum value of $Z$) is equal to

Linear Programming
Solution:
maximum value of $Z +$ minimum value of $Z$.
$= 15 - 32 = -17$
Corner Points
Corresponding value of $Z$
(0,0)
0
(5, 0)
15 (maximum)
(6, 5)
-2
(6, 8)
-14
(4, 10)
-28
(0, 8)
-32 (minimum)
| Corner Points | Corresponding value of $Z$ |
|---|---|
| (0,0) | 0 |
| (5, 0) | 15 (maximum) |
| (6, 5) | -2 |
| (6, 8) | -14 |
| (4, 10) | -28 |
| (0, 8) | -32 (minimum) |