Q.
The equation of the circle passing through the points of intersection of the two orthogonal circles S1=x2+y2+kx−4y−1=0,S2=3x3+3y2−14x+23y−15=0 and passing through the point (−1,−1) is
We have S1:x2+y2+kx−4y−1=0 S2:3x2+3y2−14x+23y−15=0 =x2+y2−314x+323y−5=0
Since, S1 and S2 are orthogonal ∴2[(2−k)(37)+(2)(6−23)]=−1−5 ⇒2[6−7k−646]=−6 ⇒6−7k−646=−3 ⇒67k=3−646<br/>⇒67k=618−46 ⇒7k=−28 ⇒k=−4 ∴S1:x2+y2−4x−4y−1=0 S2:x2+y2−314x+323y−5=0
Equation of circle passing through intersection of S1 and S2 is x2+y2−4x−4y−1+λ(x2+y2−314x+323y−5)=0
Since above circle passes through (−1,−1), so 1+1+4+4−1+λ(1+1+314−323−5)=0 9−6λ=0 ⇒λ=23 ∴ Equation of required circle is x2+y2−4x−4y−1+23(x2+y2−314x+323y−5)=0 ⇒2x2+2y2−8x−8y−2+3x2+3y2−14x+23y−15=0 ⇒5x2+5y2−22x+15y−17=0