Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The equation of the circle passing through the points of intersection of the two orthogonal circles $S_{1}=x^{2}+y^{2}+k x-4 y-1=0, S_{2}=3 x^{3}+3 y^{2}-14 x+23 y-15=0$ and passing through the point $(-1,-1)$ is

TS EAMCET 2020

Solution:

We have
$S_{1}: x^{2}+y^{2}+k x-4 y-1=0$
$S_{2}: 3 x^{2}+3 y^{2}-14 x+23 y-15=0 $
$=x^{2}+y^{2}-\frac{14}{3} x+\frac{23}{3} y-5=0$
Since, $S_{1}$ and $S_{2}$ are orthogonal
$\therefore 2\left[\left(\frac{-k}{2}\right)\left(\frac{7}{3}\right)+(2)\left(\frac{-23}{6}\right)\right]=-1-5$
$\Rightarrow 2\left[\frac{-7 k}{6}-\frac{46}{6}\right]=-6$
$ \Rightarrow \frac{-7 k}{6}-\frac{46}{6}=-3 $
$\Rightarrow \frac{7 k}{6}=3-\frac{46}{6}
$$\Rightarrow \frac{7 k}{6}=\frac{18-46}{6}$
$\Rightarrow 7 k=-28 $
$\Rightarrow k=-4 $
$\therefore S_{1}: x^{2}+y^{2}-4 x-4 y-1=0$
$S_{2}: x^{2}+y^{2}-\frac{14}{3} x+\frac{23}{3} y-5=0$
Equation of circle passing through intersection of $S_{1}$ and $S_{2}$ is $x^{2}+y^{2}-4 x-4 y-1+\lambda\left(x^{2}+y^{2}-\frac{14 x}{3}+\frac{23}{3} y-5\right)=0$
Since above circle passes through $(-1,-1)$, so
$1+1+4+4-1+\lambda\left(1+1+\frac{14}{3}-\frac{23}{3}-5\right)=0$
$9-6 \lambda=0$
$ \Rightarrow \lambda=\frac{3}{2}$
$\therefore $ Equation of required circle is
$x^{2}+y^{2}-4 x-4 y-1+\frac{3}{2}\left(x^{2}+y^{2}-\frac{14 x}{3}+\frac{23 y}{3}-5\right)=0 $
$\Rightarrow 2 x^{2}+2 y^{2}-8 x-8 y-2+3 x^{2}+3 y^{2}-14 x+23 y-15=0 $
$\Rightarrow 5 x^{2}+5 y^{2}-22 x+15 y-17=0$