Q.
The equation log3(3−x)−log3(3+x)=log3(1−x)−log3(2x+1) has
65
108
Continuity and Differentiability
Report Error
Solution:
We have log3(3−x)−log3(3+x)=log3(1−x)−log3(2x+1) ⇒log3((3−x)(2x+1))=log3((3+x)(1−x))⇒(3−x)(2x+1)=(1−x)(3+x) ⇒6x−2x2+3−x=3+x−3x−x2⇒−2x2+5x+3=−x2−2x+3⇒x2−7x=0 ⇒x=0,7
But, x=7 (rejected)
So, x=0 is the only solution.