Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The equation $\log _3(3-x)-\log _3(3+x)=\log _3(1-x)-\log _3(2 x+1)$ has

Continuity and Differentiability

Solution:

We have $\log _3(3-x)-\log _3(3+x)=\log _3(1-x)-\log _3(2 x+1)$
$\Rightarrow \log _3((3-x)(2 x+1))=\log _3((3+x)(1-x)) \Rightarrow(3-x)(2 x+1)=(1-x)(3+x)$
$\Rightarrow 6 x-2 x^2+3-x=3+x-3 x-x^2 \Rightarrow -2 x^2+5 x+3=-x^2-2 x+3 \Rightarrow x^2-7 x=0$
$\Rightarrow x=0,7$
But, $x=7$ (rejected)
So, $x =0$ is the only solution.