Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation |(1+x)2 (1-x)2 -(2+x2) 2 x+1 3 x 1-5 x x+1 2 x 2-3 x|+|(1+x)2 2 x+1 x+1 (1-x)2 3 x 2 x 1-2 x 3 x-2 2 x-3|=0
Q. The equation
∣
∣
(
1
+
x
)
2
2
x
+
1
x
+
1
(
1
−
x
)
2
3
x
2
x
−
(
2
+
x
2
)
1
−
5
x
2
−
3
x
∣
∣
+
∣
∣
(
1
+
x
)
2
(
1
−
x
)
2
1
−
2
x
2
x
+
1
3
x
3
x
−
2
x
+
1
2
x
2
x
−
3
∣
∣
=
0
82
94
Determinants
Report Error
A
has no real solution
B
has 4 real solutions
C
has two real and two non-real solutions
D
has infinite number of solutions, real or non-real
Solution:
1
st
two columns of
1
st
determinant are same as
1
st
two rows of
2
nd
.
Hence transpose the
2
nd
. Add the two determinants and use
C
1
→
C
1
+
C
3
⇒
D
=
0