Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The equation $\begin{vmatrix}(1+x)^2 & (1-x)^2 & -\left(2+x^2\right) \\ 2 x+1 & 3 x & 1-5 x \\ x+1 & 2 x & 2-3 x\end{vmatrix}+\begin{vmatrix}(1+x)^2 & 2 x+1 & x+1 \\ (1-x)^2 & 3 x & 2 x \\ 1-2 x & 3 x-2 & 2 x-3\end{vmatrix}=0$

Determinants

Solution:

$1^{\text {st }}$ two columns of $1^{\text {st }}$ determinant are same as $1^{\text {st }}$ two rows of $2^{\text {nd }}$.
Hence transpose the $2^{\text {nd }}$. Add the two determinants and use $C _1 \rightarrow C _1+ C _3 \Rightarrow D =0$