Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The domain of the function f(x)=√x-√1-x2 is
Q. The domain of the function
f
(
x
)
=
x
−
1
−
x
2
is
1338
188
BITSAT
BITSAT 2020
Report Error
A
[
−
1
,
−
2
1
]
∪
[
2
1
,
1
]
B
[
−
1
,
1
]
C
[
−
∞
,
−
2
1
]
∪
[
2
1
,
+
∞
]
D
[
2
1
,
1
]
Solution:
For
f
(
x
)
to be defined, we must have
x
−
1
−
x
2
≥
0
or
x
≥
1
−
x
2
>
0
∴
x
2
≥
1
−
x
2
or
x
2
≥
2
1
Also,
1
−
x
2
≥
0
or
x
2
≤
1
Now,
x
2
≥
2
1
⇒
(
x
−
2
1
)
(
x
+
2
1
)
≥
0
⇒
x
≤
−
2
1
or
x
≥
2
1
Also,
x
2
≤
1
⇒
(
x
−
1
)
(
x
+
1
)
≤
0
⇒
−
1
≤
x
≤
1
Thus,
x
>
0
,
x
2
≥
2
1
and
x
2
≤
1
⇒
x
∈
[
2
1
,
1
]