Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The domain of the function $f(x)=\sqrt{x-\sqrt{1-x^{2}}}$ is

BITSATBITSAT 2020

Solution:

For $f(x)$ to be defined, we must have
$x-\sqrt{1-x^{2}} \geq 0$ or $x \geq \sqrt{1-x^{2}}>0$
$\therefore x^{2} \geq 1-x^{2}$ or $x^{2} \geq \frac{1}{2}$
Also, $1-x^{2} \geq 0$ or $x^{2} \leq 1$
Now, $x^{2} \geq \frac{1}{2} \Rightarrow \left(x-\frac{1}{\sqrt{2}}\right)\left(x+\frac{1}{\sqrt{2}}\right) \geq 0$
$\Rightarrow x \leq-\frac{1}{\sqrt{2}}$ or $x \geq \frac{1}{\sqrt{2}}$
Also, $x^{2} \leq 1 \Rightarrow (x-1)(x+1) \leq 0$
$\Rightarrow -1 \leq x \leq 1$
Thus, $x>0, x^{2} \geq \frac{1}{2}$ and $x^{2} \leq 1$
$\Rightarrow x \in\left[\frac{1}{\sqrt{2}}, 1\right]$