Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The differential equation obtained by eliminating arbitrary constants from y = ae bx is
Q. The differential equation obtained by eliminating arbitrary constants from
y
=
a
e
b
x
is
2115
223
Differential Equations
Report Error
A
y
d
x
2
d
2
y
+
d
x
d
y
=
0
6%
B
d
x
2
d
2
y
−
d
x
d
y
=
0
12%
C
y
d
x
2
d
2
y
−
(
d
x
d
y
)
2
=
0
69%
D
y
d
x
2
d
2
y
+
(
d
x
d
y
)
2
=
0
12%
Solution:
The given equation is
y
=
a
e
b
x
⇒
d
x
d
y
=
ab
e
b
x
⇒
d
x
2
d
2
y
=
a
b
2
e
b
x
…
(i)
⇒
a
e
b
x
d
x
2
d
2
y
=
a
2
b
2
e
b
x
…
(ii)
⇒
y
d
x
2
d
2
y
=
(
d
x
d
y
)
2
[
from eq. (ii)
]
⇒
y
d
x
2
d
2
y
−
(
d
x
d
y
)
2
=
0