Thank you for reporting, we will resolve it shortly
Q.
The differential equation obtained by eliminating arbitrary constants from $y = ae ^{ bx }$ is
Differential Equations
Solution:
The given equation is $y = ae ^{b x }$
$\Rightarrow \frac{ dy }{ dx }= abe ^{ bx } $
$\Rightarrow \frac{ d ^{2} y }{ dx ^{2}}= ab ^{2} e ^{ bx } \dots$(i)
$\Rightarrow a e^{b x} \frac{d^{2} y}{d x^{2}}=a^{2} b^{2} e^{b x} \dots$(ii)
$\Rightarrow y \frac{ d ^{2} y }{ dx ^{2}}=\left(\frac{ dy }{ dx }\right)^{2} [$ from eq. (ii) $]$
$\Rightarrow y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}=0$