Q.
The differentiable functions f,g and h are such that f′(x)=g(x),g′(x)=h(x),h′(x)=f(x), f(0)=1,g(0)=0=h(0), find [f(x)]3+[g(x)]3+[h(x)]3−3f(x)g(x)h(x) at x=7.
Let y(x)=[f(x)]3+[g(x)]3+[h(x)]3−3f(x)g(x)h(x) ⇒y′(x)=3[f(x)]2f′(x)+3[g(x)]2g′(x)+3[h(x)]2h′(x)−3[f(x)g(x)h′(x)+f(x)g′(x)h(x)+f′(x)g(x)h(x)] =3[f(x)]2g(x)+3[g(x)]2h(x)+3[h(x)]2f(x)−3[f(x)g(x)f(x)+f(x)h(x)h(x)+g(x)g(x)h(x)] =0 ⇒y(x) is a constant for all x∈R ⇒y(7)=y(0) y(0)=[f(0)]3+[g(0)]3+[h(0)]3−3f(0)g(0)h(0) =13+0+0−3(0) =1 ⇒y(7)=1