Q. The differentiable functions $f, g$ and $h$ are such that $f'(x)=g(x), g'(x)=h(x), h'(x)=f(x)$, $f(0)=1, g(0)=0=h(0)$, find $[f(x)]^{3}+[g(x)]^{3}+[h(x)]^{3}-3 f(x) g(x) h(x)$ at $x=7$.
Limits and Derivatives
Solution: