Q.
The difference between the greatest and least values of the function f(x)=sin2x−x on [−2π,2π] is
1554
221
AMUAMU 2013Application of Derivatives
Report Error
Solution:
Given, f(x)=sin2x−x f′(x)=2cos2x−1 f′′(x)=−4sin2x
For maxima or minima, put f′(x)=0 ⇒2cos2x−1=0 ⇒cos2x=21=cos3π ⇒cos2x=2nπ±3π ⇒x=nπ±6π
For n=0,x=±6π
Now, at x=6π, f′′(x)=−4×23<0 ∴ maxima
at x=−6π f′′(x)=4×23>0 ∴ minima
Now, f(6π)=sin2(6π)−6π=23−6π f′(−6π)=sin2(−6π)+6π=−23+6π
Thus, greatest value of f(x)=23−6π
and least value of f(x)=−23+6π
Hence, required difference =(23−6π)−(−23+6π) =223−62π =3−3π