Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The difference between the greatest and least values of the function f(x) = sin2x-x on [-(π/2),(π/2)] is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The difference between the greatest and least values of the function $ f(x) = \sin2x-x $ on $ \left[-\frac{\pi}{2},\frac{\pi}{2}\right] $ is
AMU
AMU 2013
Application of Derivatives
A
$ \pi $
B
$ \sqrt{3} - \pi/3 $
C
$ -\sqrt{3} + \pi/3 $
D
None of the above
Solution:
Given, $f(x) =\sin 2 x-x$
$f^{\prime}(x) =2 \cos 2 x-1 $
$f^{\prime \prime}(x) =-4 \sin 2 x$
For maxima or minima, put $f^{\prime}(x)=0$
$\Rightarrow 2 \cos 2 x-1=0 $
$\Rightarrow \cos 2 x=\frac{1}{2}=\cos \frac{\pi}{3} $
$\Rightarrow \cos 2 x=2 n \pi \pm \frac{\pi}{3} $
$\Rightarrow x=n \pi \pm \frac{\pi}{6}$
For $n=0, x=\pm \frac{\pi}{6}$
Now, at $x=\frac{\pi}{6}$,
$f^{\prime \prime}(x)=-4 \times \frac{\sqrt{3}}{2} < 0 $
$ \therefore \text { maxima }$
at $x=-\frac{\pi}{6}$
$f^{\prime \prime}(x)=4 \times \frac{\sqrt{3}}{2}>0 $
$ \therefore \text { minima }$
Now, $f\left(\frac{\pi}{6}\right)=\sin 2\left(\frac{\pi}{6}\right)-\frac{\pi}{6}=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$
$f^{\prime}\left(-\frac{\pi}{6}\right)=\sin 2\left(-\frac{\pi}{6}\right)+\frac{\pi}{6}=-\frac{\sqrt{3}}{2}+\frac{\pi}{6}$
Thus, greatest value of $f(x)=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$
and least value of $f(x)=-\frac{\sqrt{3}}{2}+\frac{\pi}{6}$
Hence, required difference
$=\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)-\left(-\frac{\sqrt{3}}{2}+\frac{\pi}{6}\right)$
$=\frac{2 \sqrt{3}}{2}-\frac{2 \pi}{6} $
$=\sqrt{3}-\frac{\pi}{3}$