Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The determinant Δ=|a&b&ax+b b&c&bx+c ax+b&bx+c&0| is equal to zero, if
Q. The determinant
Δ
=
∣
∣
a
b
a
x
+
b
b
c
b
x
+
c
a
x
+
b
b
x
+
c
0
∣
∣
is equal to zero, if
2287
229
Determinants
Report Error
A
a
,
b
,
c
,
are in A.P.
B
a
,
b
,
c
,
are in G.P.
C
a
,
b
,
c
,
are in H.P.
D
a
x
2
+
b
x
+
c
=
0
Solution:
We have
Δ
=
∣
∣
a
b
a
x
+
b
b
c
b
x
+
c
a
x
+
b
b
x
+
c
0
∣
∣
=
∣
∣
a
b
0
b
c
0
a
x
+
b
b
x
+
c
−
(
a
x
2
+
2
b
x
+
c
)
∣
∣
,
[applying
R
3
→
R
3
−
x
R
1
−
R
2
]
=
(
b
2
−
a
c
)
(
a
x
2
+
2
b
x
+
c
)
Now,
Δ
=
0
⇒
b
2
=
a
c
or
a
x
2
+
2
b
x
+
c
=
0