Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The determinant $\Delta=\begin{vmatrix}a&b&ax+b\\ b&c&bx+c\\ ax+b&bx+c&0\end{vmatrix}$ is equal to zero, if

Determinants

Solution:

We have
$\Delta=\begin{vmatrix}a&b&ax+b\\ b&c&bx+c\\ ax+b&bx+c&0\end{vmatrix}$
$=\begin{vmatrix}a&b&ax+b\\ b&c&bx+c\\ 0&0&-\left(ax^{2}+2bx+c\right)\end{vmatrix}$,
[applying $R_{3} \rightarrow R_{3}-x R_{1}$
$\left.-R_{2}\right]$
$=\left(b^{2}-a c\right)\left(a x^{2}+2 b x+c\right)$
Now, $\Delta=0 \Rightarrow b^{2}=a c$ or $a x^{2}+2 b x+c=0$