We have, z3+2z2+2z+1=0 ⇒z3+1+2z(z+1)=0 ⇒(z+1)(z2−z+1)+2z(z+1)=0 ⇒(z+1)(z2−z+1+2z)=0 ⇒(z+1)(z2+z+1)=0
So, z+1=0 and z2+z+1=0 z=−1⇒z=ω,ω2
Hence, roots of z3+2z2+2z+1 are −1,ω,ω2
for z=−1 z2018+z2017+1=(−1)2018+(−1)2017+1 =+1−1+1=1=0
for z=w z2018+z2017+1=(ω)2018+(ω)2017+1=ω2+ω+1 =0[∵ω2+ω+1=0]
for z=ω2 z2018+z2017+1=(ω2)2018+(ω2)2017+1 =ω4036+ω4034+1 =ω+ω2+1=0
Thus, the common roots are ω and ω2 by checking options z4+z2+1=0
for z=ω ω4+ω2+1=ω+ω2+1=0
and for z=ω2 (ω2)4+(ω2)2+1 =ω8+ω4+1 =ω2+ω+1=0
Hence, z4+z2+1=0 satisfy by the both common roots.