Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The common roots of the equations z3+2 z2+2 z+1=0 and z2018+z2017+1=0 satisfy the equation
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The common roots of the equations $z^{3}+2 z^{2}+2 z+1=0$ and $z^{2018}+z^{2017}+1=0$ satisfy the equation
TS EAMCET 2018
A
$z^{2}-z+1=0$
B
$z^{4}+z^{2}+1=0$
C
$z^{6}+z^{3}+1=0$
D
$z^{12}+z^{6}-1=0$
Solution:
We have,
$ z^{3}+2 z^{2}+2 z+1=0 $
$ \Rightarrow \, z^{3}+1+2 z(z+1)=0 $
$ \Rightarrow (z+1)\left(z^{2}-z+1\right)+2 z(z+1)=0 $
$ \Rightarrow \, (z+1)\left(z^{2}-z+1+2 z\right)=0 $
$\Rightarrow \,(z+1)\left(z^{2}+z+1\right)=0 $
So, $ z+1=0$ and $z^{2}+z+1=0$
$z=-1 \Rightarrow z=\omega, \omega^{2}$
Hence, roots of $z^{3}+2 z^{2}+2 z+1$ are $-1, \omega, \omega^{2}$
for $z=-1$
$z^{2018}+z^{2017}+1=(-1)^{2018}+(-1)^{2017}+1$
$=+1-1+1=1 \neq 0$
for $\quad z=w$
$z^{2018}+z^{2017}+1=(\omega)^{2018}+(\omega)^{2017}+1=\omega^{2}+\omega+1$
$=0 \, \left[\because \omega^{2}+\omega+1=0\right]$
for $z=\omega^{2}$
$z^{2018}+z^{2017}+1=\left(\omega^{2}\right)^{2018}+\left(\omega^{2}\right)^{2017}+1$
$=\omega^{4036}+\omega^{4034}+1 $
$=\omega+\omega^{2}+1=0$
Thus, the common roots are $\omega$ and $\omega^{2}$ by checking options
$z^{4}+z^{2}+1=0$
for $z =\omega $
$\omega^{4}+\omega^{2}+1 =\omega+\omega^{2}+1=0 $
and for $z =\omega^{2}$
$\left(\omega^{2}\right)^{4}+\left(\omega^{2}\right)^{2}+1 $
$=\omega^{8}+\omega^{4}+1 $
$=\omega^{2}+\omega+1=0$
Hence, $z^{4}+z^{2}+1=0$ satisfy by the both common roots.